■ データやAI、ロボティクス活用による最新Logistics DX事例
2024年4月、法令上ドライバーの時間外労働の上限が年間960時間に規制され、売上への影響や運賃アップ、人手不足などが予測される「2024年問題」が迫っています。物流領域のプロセスの効率化や生産性向などの改革に取り組むことが、企業の喫緊の課題となっています。その課題解決に貢献するのが、「LogisticsTech(物流テック)です。
「LogisticsTech(物流テック)」は、Logistics(物流)とTech(テクノロジー)を組み合わせた造語で、製品やサービスの運送、配送、在庫管理、需要予測、サプライチェーン管理などの物流プロセスを効率化、自動化、または最適化するための技術のことを指します。運送の計画や最適化をサポートする運送管理システム(TMS)や、在庫管理や倉庫内の操作を効率化するウェアハウス管理システム(WMS)、在庫の追跡と管理を自動化し、過剰在庫や在庫切れを防ぐ在庫管理システム、また大量のデータから有用な洞察を引き出すデータ分析ツールや、需要予測、在庫管理、配送の最適化などの分野で利用されているAIや機械学習などの技術が物流テックを支えています。
このような物流テックを活用した事業を支えているのは、膨大なデジタルデータです。データのライフサイクルマネジメントと品質向上、リスク管理の重要性の啓発を行い、日本のDX推進に貢献するため、AOSデータは各業種の先進企業のDX推進やAIデータ活用事例、リスクマネジメント事例等を紹介する「産業DX/AIデータフォーラム」を企画しています。2024年2月は最先端の物流テック事業や取り組みを推進されるスピーカーにご登壇いただきお届けします。
*本アジェンダは予告なく変更される場合がございます。予めご了承ください。